Postprandial hyperlipidemia in streptozotocin-induced diabetic rats is due to abnormal increase in intestinal acyl coenzyme A:cholesterol acyltransferase activity.

نویسندگان

  • J Kusunoki
  • K Aragane
  • T Kitamine
  • H Kozono
  • K Kano
  • K Fujinami
  • K Kojima
  • T Chiwata
  • Y Sekine
چکیده

Postprandial hyperlipidemia (PH) is recognized as a significant risk factor for cardiovascular disease. The present study, involving rats with streptozotocin (STZ)-induced diabetes, was performed to establish a PH model and to examine the relation between small intestinal acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and serum lipid levels in the postprandial state. The small intestinal ACAT activities in normal rats during the experimental period were 4 to 5 pmol/mg protein per minute. In contrast, in the diabetic rats, the ACAT activities were 2 to 3 times higher than activities seen in normal rats from 7 to 21 days after the STZ injection in the absence of a high fat diet and hyperplasia in the gut. In an oral fat-loading test that used diabetic rats that had been injected with STZ (60 mg/kg) intravenously 14 days previously, the postloading changes in the serum concentrations of total cholesterol (TC) and triglyceride (TG) were significantly greater in the diabetic rats than in normal rats. Single oral administration of (1s,2s)-2-[3-(2,2-dimethylpropyl)-3-nonylureido]cyclohexane- 1-yl 3-[(4R)-N-(2,2,5,5-tetramethyl-1, 3-dioxane-4-carbonyl)amino]propionate (F-1394, 3 to 30 mg/kg), a potent ACAT inhibitor, suppressed the post-fat-loading elevation of serum TC levels in the diabetic rats in a dose-dependent manner without affecting serum glucose levels. Furthermore, the small intestinal ACAT activity, serum TG levels, and lymphatic absorption of TC and TG in the rats that were administered F-1394 (30 mg/kg) were reduced by approximately 90%, 70%, 30%, and 15%, respectively. This is the first evidence that elevated ACAT activity in the gut, unlike hyperplasia and hyperphagia, induces PH in rats. Our results strongly suggest that F-1394 may be a potential treatment for PH in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) is responsible for elevated intestinal ACAT activity in diabetic rats.

OBJECTIVE Diabetes-induced dyslipidemia is seen in streptozotocin-induced diabetic rats. This is caused, in part, by elevated intestinal acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity. Because two ACAT isozymes (ACAT-1 and ACAT-2) were identified, in the present study we determined which ACAT isozyme was involved in the elevated intestinal ACAT activity in diabetic rats. METHODS ...

متن کامل

Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase.

Cholesterol esterase of pancreatic juice origin and acyl coenzyme A:cholesterol acyltransferase, both associated with the intestinal mucosa, are implicated in the extensive esterification of exogenous cholesterol during absorption. To assess the role of each enzyme, [4-14C]cholesterol absorption into mesenteric lymph of rats with normal mucosal levels of both esterification enzymes was compared...

متن کامل

Beneficial Effects of Coenzyme Q10 in Streptozotocin-Induced Type I Diabetic Rats

The present investigation was undertaken to study the benefical effects of Coenzyme Q10 in streptozotocin (STZ)-induced type I diabetic rats. STZ-diabetes produced a significant increase in fasting glucose levels that was associated with decrease in serum insulin levels. STZ also produced hypercholesterolemia, hypertriglyceredemia, increase in lipid peroxidation and decrease in high density lip...

متن کامل

Acyl-coenzyme A:cholesterol acyltransferase inhibition ameliorates proteinuria, hyperlipidemia, lecithin-cholesterol acyltransferase, SRB-1, and low-denisty lipoprotein receptor deficiencies in nephrotic syndrome.

BACKGROUND Nephrotic syndrome (NS) is associated with hyperlipidemia, altered lipid regulatory enzymes and receptors, and increased risk of progressive renal and cardiovascular diseases. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) catalyzes intracellular esterification of cholesterol and plays an important role in production of apolipoprotein B-containing lipoproteins, regulation of chol...

متن کامل

Pyripyropene A, an acyl-coenzyme A:cholesterol acyltransferase 2-selective inhibitor, attenuates hypercholesterolemia and atherosclerosis in murine models of hyperlipidemia.

OBJECTIVE Pyripyropene A (PPPA) of fungal origin is the first compound that has been found to strongly and selectively inhibit acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) isozyme activity in vitro. The purpose of the present study was to investigate in vivo efficacy of the ACAT2-selective inhibitor in atherosclerosis. METHODS AND RESULTS PPPA treatment (10 to 100 mg/kg) caused 30.5±...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2000